NATURAL CONVECTION IN A VERTICAL CHANNEL IN
A NONUNIFORM MAGNETIC FIELD
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it is shown that a nonuniform magnetic field suppresses the natural convection and shapes the
specific MHD flow, v :

The study of the effect of a magnetic field on the structure of flow and convective heat exchange during
natural convection attracts the interest of many investigators, This problem has been taken up in the litera-
ture. However, the studies were conducted for the most part for semiinfinite geometries and uniform mag-
netic fields. Information on these studies can be found in [1-5]. In this article we are interested in natural
convection in channels and closed cavities,

A theory on the MHD effect of free thermal convection of an electrically conducting liquid in a verti-
cal round pipe in a weak magnetic field was presented by Smirnov [6]. He wrote a number of articles on a
theoretical and experimental study of thermal convection of mercury in a closed pipe in a transverse mag-
netic field [7-8]. Gershuni and Zhukhovitskii [9-10] studied stationary convective movement of an electri-
cally conducting liquid between vertical parallel plates in a transverse uniform magnetic field. In the arti-
cles the distribution of velocity, temperature, and induced magnetic field was determined, and the convec-
tive heat flux was calculated. It was shown that with an increase in the field the convective flow retains its
symmetry but is rapidly retarded, This problem was generalized by Regirer [11] for the case of the pres-
ence of a vertical temperature gradient. It was shown that the presence of a magnetic field considerably
delays the onset of instability in the equilibrium. A solution of the MHD problem of convection generated
in an electrically conducting liquid in vertical channels can be found in the articles of Regirer [12-13].

Plane stationary convective MHD movement in a rectangular cavity in the presence of a horizontal
magnetic field was studied by Singh and Cowling [14],

Agarwal [15] investigated natural convection in a horizontal channel with porous walls in a uniform
transverse magnetic field. The liquid was forced in through the lower wall of the channel and was drawn
off through the upper wall. It was shown that.the magnetic field leads to a decrease in the level of velo-
cities and temperatures in the channel and to a decrease in the Nusselt number. :

The study of the effect of a nonuniform magnetic field on natural convection is timely at present. This
problem was examined for a semiinfinite geometry in a number of articles [16-18], on which we will not
dwell, The free convection of an electrically conducting liquid inside a closed surface, located in a non-
uniform transverse magnetic field, was studied by Emery [19]. It was shown that if the velocity, tempera-
ture, thickness of the boundary layer, and magnetic induction vary in a gradual way: v ~ AyD; Ow— 6o ~ Cy7;
6 ~Ny™, and B ~ Dyﬁ, then a golution exists in two cases: 1) n=1/2, y =0, m=1/4, g=-1/4and 2)
n=1, y=1, m=0, g=0. For both cases equations are obtained for the ratio of the Nusselt number in
the presence of a magnetic field Ny and without a magnetic field N. The ratio Ny /N depends on the Prandtl
number and the parameter B? /v Af. The ratio Ny /N decreases with an increase in B2//A9. The theoret-
ical calculations were qualitatively confirmed by the results of experiments,

Convective instability of a conducting liquid in a long vertical pipe of circular cross section was
studied by Pisarev [20]. The magnetic field was created by a current flowing through the liquid parallel to
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Fig. 1. Dependence of velocity profile on y at M =2
(a)and at M = 4 (b): 1) y=0;2) 0.01; 3) 0.05; 4) 0.1,

the gravitational field. The vertical temperature gradient examined was also parallel to the gravitational
field. The dependence of the critical Rayleigh number on the Hartman number was obtained in the article,

A disruption in the mechanical stability of an unevenly heated conducting liquid in a magnetic field takes
place on reaching higher values of the critical temperature gradient than in the case of free thermal con-
vection, It was found that, at the ultimate value of the Hartman number, convection may be completely sup-
pressed, It must be noted that there are several inaccuracies in the formulation of the problem, The de-
velopment of natural convection in an electrically conducting liquid may be connected with a transition
through a stage of neutral oscillations. Therefore the Rayleigh number found is not necessarily the smal-
lest. If the magnetic field is nonuniform (Hyp ~ r) then the boundary conditions for the temperature and the

induced magnetic field must be interpreted in some way,

We study the effect of a nonuniform magnetic field on natural convection in a vertical channel. We
set down a dimensionless system of equations deseribing free convection in electrically conducting liquids.
The distance between the vertical walls of the channel is equal to 22, while the constant temperature differ-
ence between the surfaces is 26;. We take a and 6; as the units of distance and temperature, and v /a, a®
/v, and pv?/q? as units of velocity, time, and pressure, respectively.

v H* M2
—— (VW) V= — + —— )+ Av 4+ Gr6j + —— (Hy) H,
3 (vw) V(P . ) v i R (Hy)

m

1
— L yy8 = — A0,
ot v Pr @)

JH 1 -
— +(vw)H—Hy)v = — AH,
ot m
divH =0, divv =0,
where Pr = v/ is the Prandtl number; M = yHy.a V6 /7 is the Hartman number; n = vp; Rm = vuo is the
magnetic Reynolds number; Gr = Bg61a3 /v? is the Grashof number.

We examine the stationary convection of an electrically conducting liquid in the space between verti-
cal parallel surfaces heated to different temperatures, in an external nonuniform magnetic field. Let the
linear dimensions of the plates be many times larger than the separation between the surfaces, so that the

problem becomes one-dimensional,

In accordance with the assumptions made, system (1) takes the form;:

d*v m2 df, d ( Hz)
= = , 0= —[p+ —|
0 dx? +Gr9—|—Rm Hs dx dx P 8n
du 1 d®H
0=H, — +-— ——L, 2
N dx+Rm dx? @

d*8
0= PRk H,=H,(x), H,=1= const.
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z We set the boundary conditions for system (2) in the following form:

2
23 U= O, X =4 17
R ™ Hy=H,, 0=-41 x=+1, 3)
~ = — 4% Hy=H, 8=—1, x=—1
p ' 7 7 " From system (2) and the boundary conditions (3) we obtain the fol-
. lowing solution:
Fig. 2. Dependence of flow rate
of liquid Q; and convective heat y CGreshM—shMo) | AH, M o My, @)
flux Qv on M. M?sh M R, 2shM
_ . g oMt H  AH,shMx
Y 2 - 2shM
GrR,, GrR
— hM—chMx| — —2(x*—1). 5
MishM (° ) e & D ©)
e o 1+ Hj
Hx‘— 1, 9=1x, p=const— e
d where AHy = Hy —H,.
Let us consider the solution obtained. The first component |
in the expression for the velocity corresponds to the velocity of con-
K vective flow in a vertical infinite siot in an external uniform trans-
/ n verse magnetic field (4), while the second component is due to the
- 0 GZargbgeio x ‘ nonuniformity of the magnetic field, The fotal field Hy in Eq. (5)
Fig. 3. Dependence of velocity represents the superposition of the induced magnetic field and the
profile on M at Gr=0:1) M = 1; component of the external magnetic field. In order to isolate the

component of the induced magnetic field we proceed as follows. We
assume that the liquid in the channel is not electrically conducting,
so that M = 0 and Ry, = 0 and the induced magnetic field is absent, The equation for determining the y-com-
ponent of the magnetic field takes the form:

2) 2; 3) 3; 4) 4.

d*H,
d? )
In accordance with the boundary conditions (3) we obtain
H,+H, AH
H, =2 Y x.
¢ 2 + 2

We will assume that this is actually the y-component of the external magnetic field, so that the external
field in the general form can be written with the equation
At +———~Ag“ x )i,

where i and j are unit vectors, In weak magnetic fields where M « 1 the velocity of convective flow de-
pends weakly on the Hartman number: .

x —x3 358 + Tx — 1048 AH
= Gr2t T 2 T M —E (1 —ax) M
v=_GCr . 4 Gr T) + 2Rm( )

In strong fields when M >» 1

x—x° AH
=@ L] l——-x‘ M.
v =G e TR, Y

We now follow how the nonuniformity of the field affects natural convection. For this we construct
the dependence of the velocity on the coordinate x in the form:

o xshM—shMzx M AH
v _ xshM—shMx chM—chMy), p= =L .
Gr TS TR ) V=GR,

The effect of a nonuniform field y on the process of natural convection is reflected in Fig. 1a, b.
The dependence v(x) corresponding to y = 0 represents an antisymmetric curve. At some - different from
zero the symmetry is disrupted and some flowing of liquid appears: the upward flow of liquid is greater
than the downward flow. The flow rate depends on the value M:
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Fig. 4. Dependence of velocity profile on g at M = 2
(a) and at M = 4 (b): 1) g = 0; 2) 10); 3) 20); 4) 60.

Q _ychM (6)
o shM

where o = AHy/Rm; Q7 is the dimensionless flow rate of the liquid.

It is interesting to note that AHy and consequently o were considered to be positive up to now. And
in this case the flow of liquid arising under the effect of an external magnetic field is directed vertically
upward. With a change in the direction of the magnetic field gradient AHy the flow also changes to the op-
posite direction.

The dependence of the dimensgionless flow rate of liquid on the Hartman number is reflected in Fig.

2, For M > 4 the ratio chM/shM is practically equal to 1, and therefore in the region M > 4

@——z M—1, (7

[#2

i.e., in the region of large M the flow rate of liquid is a linear function of the Hartman number. It is seen
from a comparison of Fig, la, b that for a given field nonuniformity vy its effect strengthens with an in-
crease in the Hartman number. Thus, for y = 0.05 at M = 2 the downward flow is large, while for the same
v and M = 4 this flow is generally absent, The explanation is evidently that with an increase in M the nat-
ural convection is more strongly damped, while the MHD flow produced by the field nonuniformity becomes
more intense with an increase in M.

This problem can be examined from another side: tracing the effect of free convection on the develop-
ment of MHD flow under the effect of a nonuniform magnetic field,

In the absence of a temperature gradient between the surfaces the velocity of MHD flow has the pro-
file
M
2shM

LA (chM —chMy),

24

reflected in Fig, 3. As is seen, its magnitude grows with an increase in M. In the limiting cases for M
< 1

2 A0=) e
o 2 ’

while in strong fields (M >> 1) the velocity depends markedly on M:

2 =
o 2
In the formation of a velocity profile in the region of intermediate values of M the following picture is

observed. For Hartman numbers M < 3 the velocity profile has a characteristic property: the velocities
near the walls are low, while they are large near the axis, It is clearly seen on the graph that the region
of the axis for M = 1 occupies the central part of the channel —0.4 < x < 0.4, while it contracts with an in-
crease in M. At M = 2 it occupies the region —0.2 < x < 0.2, and at M = 3 this region practically disap-
pears.
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It is seen from an analysis of Eqs. (6) and (7) that some displacement of liquid arises under isother-
mal conditions, produced by the nonuniformity of the external magnetic field, i.e., a "magnetic” pump de-
velops.

We follow how the thermal convection affects this liquid flow. The thermal convection does not exert
an effect on the magnitude of the liquid flow rate. The effect of convective flow on the movement of the
liquid under the effect of an external magnetic field is expressed in a change in the velocity profile of the
flow. TFor this we construct a dependence of the velocity on x in the form:

v xshM—shMx M Gr
—_— n 1 ChM‘—‘ th » = .
2 P e T e MM B=
The effect of free convection on the MHD flow of the liquid for M = 2 and M = 4 is indicated in Fig. 4a, b.

As seen from Fig. 4, free convection exerts a considerable effect on the velocity profile of flow, right
up to the appearance in the channel of downward movement of the liquid, For M = 2 the downward flow ap-
pears at 8 = 10, while for M = 4, as one should expect, downward flow appears in the channel at the higher.
B8 = 60.

Thus, one can draw the conclusion that the stronger the external magnetic field, i.e., the larger the
Hartman number M, the weaker is the effect of free convection on the liquid flow arising from the effect of
the external nonuniform magnetic field.

We trace whether the generation of MHD flow of the liquid makes a contribution to the vertical con-
vective heat flux; )
+1
Qu = j v (%) 0 (x) dx.
—1
It is seen from Egq. (4) for the velocity that the second term, produced by the nonuniformity of the
magnetic field, does not make a contribution to the convective heat flux, since after integration we obtain
an even function mutually compensating within the substitution limits. Thus, the vertical convective heat
flux per unit length in the direction of the y axis is:

Qu _ 45 (1 cthM 1
Q MZ(B M M)

where Q, = 2Gr/45 is the heat flux in the absence of a magnetic field, It coincides with the heat flux arising
in a vertical channel in an external uniform transverse field [9]. And this should be expected since the
developing MHD flow exists under isothermal conditions and consequently does not transfer heat.

The authors express their sincere thanks to Academician A, V. Lykov for scientific guidance and for
constant attention to the work.,

NOTATION

is the half width of the channel;

is the constant temperature drop between the channel walls;
is the kinematic viscosity;

is the dynamic viscosity;

is the density of the liquid;

is the magnetic permeability of the liquid;
is the specific conductivity of the liquid;
is the magnetic field strength;

is the hydrostatic pressure;

is the coefficient of thermal diffusivity;

is the coefficient of volumetric expansion,

R
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