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It is shown that a nonuniform magnetic field suppresses  the natural convection and shapes the 
specific MHD flow. 

The study of the effect of a magnetic field on the s t ruc ture  of flow and convective heat  exchange during 
natural  convection a t t rac ts  the interes t  of many invest igators .  This problem has been taken up in the l i t e r a -  
ture.  However,  the studies were  conducted for the mos t  par t  for semiinfinite geometr ies  and uniform m a g -  
netic fields. Information on these studies can be found in [1-5]. In this a r t ic le  we a re  interested in natural 
convection in channels and closed cavit ies.  

A theory on the MHD effect of free thermal  convection of an electr ical ly  conducting liquid in a ve r t i -  
cal round pipe in a weak magnetic field was presented by Smirnov [6]. He wrote a number of a r t ic les  on a 
theoretical  and experimental study of thermal convection of me rcu ry  in a closed pipe in a t r ansve r se  mag-  
netic field [7-8]. Gershuni and Zhukhovitskii [9-10] studied s ta t ionary convective movement  of an e lec t r i -  
cally conducting liquid between ver t ical  paral lel  plates in a t r ansverse  uniform magnetic field. In the a r t i -  
cles the distr ibution of velocity,  t empera ture ,  and induced magnetic field was determined,  and the convec-  
tive heat flux was calculated. It was shown that with an increase  in the field the convective flow retains  its 
s y m m e t r y  but is rapidly retarded.  This problem was general ized by Regi rer  [11] for the case of the p r e s -  
ence of a ver t ical  temperature  gradient. It was shown that the presence  of a magnetic field considerably 
delays the onset  of instability in the equilibrium. A solution of the MHD problem of convection generated 
in an e lect r ical ly  conducting liquid in ver t ical  channels can be found in the ar t ic les  of Regi re r  [12-13]. 

P lane  s tat ionary convective MHD movement  in a rec tangular  cavity in the presence  of a horizontal  
magnetic field was studied by Singh and Cowling [14]. 

Agarwal [15] investigated natural  convection in a horizontal  channel with porous walls in a uniform 
t ransverse  magnetic field. The liquid was forced in through the lower wall of the channel and was drawn 
off through the upper wail. I t  was shown tha t the  magnetic field leads to a decrease  in the level of velo-  
cities and tempera tures  in the channel and to a decrease  in the Nusselt  number.  

The study of the effect of a nonuniform magnetic field on natural convection is t imely at present .  This 
problem was examined for a semiinfinite geometry in a number of ar t ic les  [16-18], on which we will not 
dwell. The free convection of an electr ical ly  conducting liquid inside a closed surface,  located in a non- 
uniform t ransver se  magnetic field, was studied by Emery  [19]. It was shown that if the velocity, t empera -  
ture ,  thickness of the boundary layer ,  and magnetic induction va ry  in 'a  gradual way: v ~ Ayn; 0 w - 0 ~  ~ cyT; 
6 ~ Ny m, and B ~ DyB, then a solution exists in two cases :  1) n = 1 / 2 ,  T = 0, m = 1 / 4 ,  fi = - 1 / 4  and 2) 
n = 1, T = 1, m = 0, fl = 0. For  both cases  equations a re  obtained for the ratio of the Nusselt  number in 
the p resence  of a magnetic field N M and without a magnetic field N. The rat io NM/N depends on the Prandt l  
munber and the pa rame te r  B2/v~-A-0. The ratio NM/N decreases  with an increase  in B2/~r~-O. The theore t -  
ical calculations were qualitatively confirmed by the resul ts  of experiments.  

Convective instability of a conducting liquid in a long ver t ical  pipe of c i rcu lar  c ross  section was 
studied by P i s a r e v  [20]. The magnetic field was created by a cur ren t  flowing through the liquid paral le l  to 
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Fig. 1. Dependence of ve loc i ty  p rof i le  on 7 a t  M = 2 
(a) a n d a t M = 4 ( b ) : l )  y = 0 ; 2 )  0.01; 3) 0.05; 4) 0.1. 

the gravi ta t ional  field. The ve r t i ca l  t e m p e r a t u r e  gradient  examined was a lso  para l l e l  to the gravi ta t ional  
field. The dependence of the c r i t i ca l  Rayleigh number  on the H a r t m a n  number  was obtained in the a r t i c le .  
A disrupt ion in the mechan ica l  s tabi l i ty  of an unevenly heated conducting liquid in a magnet ic  field takes 
p lace  on reach ing  higher  values  of  the c r i t i ca l  t e m p e r a t u r e  gradient  than in the case  of f ree  the rmal  con-  
vect ion.  I t  was found that ,  a t  the u l t imate  vaiue of the H a r t m a n  number ,  convect ion may  be comple te ly  sup-  
p r e s s e d .  I t  m u s t  be noted that  t he re  a r e  s ev e ra l  inaccurac ies  in the formula t ion  of the p rob lem.  The de -  
ve lopment  of na tura l  convect ion in an e l ec t r i ca l ly  conducting liquid may  be connected with a t rans i t ion 
through a s tage of neut ra l  osc i l la t ions .  T h e r e f o r e  the Rayleigh number  found is not n e c e s s a r i l y  the s m a l -  
les t .  If  the magnet ic  field is nonuniform (H~0 ~ r) then the boundary conditions for the t e m p e r a t u r e  and the 
induced magnet ic  field m u s t  be in te rp re ted  in some  way. 

We study the effect  of a nonuniform magnet ic  field on natura l  convection in a ve r t i ca l  channel. We 
se t  down a d imens ion less  s y s t e m  of equations desc r ib ing  f r ee  convection in e l ec t r i ca l ly  conducting liquids. 
The  d is tance  between the ve r t i c a l  walls  of the channel is equal to 2a, while the constant  t e m p e r a t u r e  d i f f e r -  
ence between the su r f aces  is 201. We take a and 01 as  the units of d is tance and t e m p e r a t u r e ,  and v / a ,  a 2 
/ v ,  and p v 2 / a 2  as  units of veloci ty ,  t ime ,  and p r e s s u r e ,  r e spec t ive ly .  

Ov ( H ~ ) M ~ 0--[---(vv) v = - - V  P + ~  + A v + G r 0 j + - ~  (Hv) H, 

~a ~-2-~ + vvO = ! Ao, (1) 
Ot Pr 

OH 1 -  
- -  + (vv )  H - -  (Hv)  v = - -  AH, 

Ot R~ 

d i v H = 0 ,  d i v v = 0 ,  

where  P r  = v / n  is the P rand t l  number ;  M = #H0xa ~- /~-"  is the Ha r tman  number ;  ~ = up; Rm = vpcr is the 
magnet ic  Reynolds number ;  Gr = f l g O i a 3 / v  2 is the Grashof  number .  

We examine the s t a t ionary  convect ion of an e lec t r i ca l ly  conducting liquid in the space  between v e r t i -  
cal  pa ra l l e l  su r faces  heated to d i f ferent  t e m p e r a t u r e s ,  in an external  nonuniform magnet ic  field. Le t  the 
l inear  d imensions  of the p la tes  be many  t imes  l a r g e r  than the separa t ion  between the s u r f a c e s ,  so that the 
p rob l em becomes  one-d imens iona l .  

In acco rdance  with the a s sumpt ions  made ,  s y s t e m  (1) takes the fo rm:  

O =  - -  
d~r' +GrO+M~H~ ctH~ o= d ( m )  
dx ~ R m dx ' dx P + - ~  ' 

dv 1 d2Hu. 
O = H,: ~ x  + R,n dx 2 ' 

0 = --d20 Hy = H~ (x), H~ = 1 = const. 
dx 2 ' 

(2) 
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Fig. 2. Dependence of flow ra te  
of liquid Ql and convective heat  
flux QM on M. 
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Fig. 3. Dependence of veloci ty 
prof i le  o n M a t G r =  0 : I )  M = I ;  
2) 2; 3) 3; 4) 4. 

We se t  the boundary conditions for sys tem (2) in the following form:  

v--O, x = + * ,  

Hv=H1,  0 = + 1 ,  x = + l ,  (3) 

H~=H~, o = - 1 ,  x = - , .  

F r o m  sys tem (2) and the boundary conditions (3) we obtain the f o l -  
lowing solution: 

Gr (x sh M - -  sh M x) + AH u M (ch M --  ch M x), (4) 
M~shM Rm 2shM 

Hy H i + H e  . AH, shMx 
- 2 + 2 hg 

GrR.~ (ohM--  chMx) GrR,~ 
N ash  N 2 N  e (x'  - -  1). (5) 

H = = * ,  O=x ,  p = c o n s t ~  

where  AHy = H 1 - H  2. 

Le t  us consider  the solution obtained. 

, +H~ 
8~ ' 

The f i r s t  component 
in the express ion  for the veloci ty cor responds  to the velocity of con-  
vect ive flow in a ver t ica l  infinite s lot  in an external  uniform t r ans -  
ve r s e  magnetic field (4), while the second component is due to the 
nonuniformity of the magnetic field. The total f ield Hy in Eq. (5) 
r ep resen t s  the superposit ion of the induced magnetic field and the 
component of the external  magnetic field. In o rde r  to isolate  the 
component of the induced magnetic field we proceed  as follows. We 
assume  that the liquid in the channel is not e lec t r ica l ly  conducting, 

SO that M = 0 and Rm -- 0 and the induced magnetic field is absent.  The equation for determining the y - c o m -  
ponent of the magnetic field takes the fo rm:  

deHv ---- O. 
dx 2 

In accordance  with the boundary conditions (3) we obtain 
_ _  AH~ H ~ =  H i + H e  ~_ x.  

2 2 

We will a s sume  that this is actually the y-component  of the external  magnetic field, so that the external  
field in the general  form can be wri t ten  with the equation 

H - - - l ' i + (  H~+H-z  + 2  AHy x )  j ' 2  

where  i and j a r e  unit vec to r s .  In weak magnetic fields where  M << 1 the veloci ty of convective flow de -  
pends weakly on the Har tman  number:  

z , = G r . X ~ X  3 +Gr3X 3 + 7 x - 1 0 x  5 Me+  AH v (1--xe)M ~. 
' 6 1 2 -  

In s t rong fields when M >> I 
x - - x  a + Ally (1--xa)M. 

v = Gr 20 + 2 ~ M  ~ 

We now follow how the nonuniformity of the field affects  natural  convection. For  this we cons t ruc t  
the dependence of the veloci ty  on the coordinate  x in the form:  

M AHy 
v x s h M - - s h M x  +%, (chM~chMx) ,  V = GrR---~" 
a-7 = -2 

The effect of a nonuniform field T on the process of natural convection is reflected ill Fig. In, b. 
The dependence v(x) corresponding to T = 0 represents an antisymmetrie curve, llt some T different from 
zero the symmetry is disrupted and some flowing of liquid appears: the upward flow of liquid is greater 

than the downward flow. The flow rate depends on the value M: 
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Fig. 4. Dependence of velocity profile on ~ at M = 2 
(a) and a t  M = 4 (b): 1) fl = 0; 2) 10); 3) 20);4) 60. 

ch M (6) Qz - M  --1, 
c~ shM 

where o~ = A H y / R m ;  Ql is the dimensionless  flow rate of the liquid. 

It  is in terest ing to note that AHy and consequently (z were  considered to be positive up to now And 
in this case the flow of liquid a r i s ing  under the effect of an external magnetic field is directed ver t ica l ly  
upward. With a change in the direct ion of the magnetic field gradient AHy the flow also changes to the op-  
posi te  direct ion.  

The dependence of the dimensionless  flow rate  of liquid on the Har tman number is ref lected in Fig. 
2. For  M > 4 the rat io c h M / s h M  is pract ica l ly  equal to 1, and therefore  in the region M > 4 

Qz ~ M - - 1 ,  (7) 

i .e . ,  in the region of la rge  M the flow ra te  of liquid is a l inear function of the Hartman number.  It  is seen 
from a compar ison  of Fig. l a ,  b that for a given field nonuniformity ,/ its effect s trengthens with an in- 
c r ea se  in the Har tman number.  Thus,  for 3' = 0.05 at  M = 2 the downward flow is la rge ,  while for the same 
), and M = 4 this flow is general ly absent.  The explanation is evidently that with an increase  in M the nat -  
ural  convection is m o r e  s t rongly damped, while the MHD flow produced by the field nonuniformity becomes 
more intense with an increase in M. 

This problem can be examined from another side: tracing the effect of free convection on the develop- 

ment of MHD flow under the effect of a nonuniform magnetic field. 

In the absence of a temperature gradient between the surfaces the velocity of MHD flow has the pro- 

file 
v M 

(chM--ch Mx), 
2 shM 

As is seen, its magnitude grows with an increase in M. In the limiting cases for M reflected in Fig. 3. 

<<i 

2_ _ (,I - -  xD M~, 
'co 2 

while in s t rong fields (M >> 1) the velocity depends markedly on M: 

v (1 - -  x 4) M. 
cz 2 

In the formation of a veloci ty profi le  in the region of intermediate values of M the following picture is 
observed. For Hartman numbers M < 3 the velocity profile has a characteristic property: the velocities 

near the walls are low, while they are large near the axis. It is clearly seen on the graph that the region 

of the axis for M = 1 occupies the central part of the channel -0.4 < x < 0.4, while it contracts with an in- 

crease in IVY. At M = 2 it occupies the region -0.2 < x < 0.2, and at M = 3 this region practically disap- 

pears. 
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I t  is seen  f rom an ana lys i s  of Eqs.  (6) and (7) that  some  d i sp lacement  of liquid a r i s e s  under i s o t h e r -  
ma l  conditions,  produced by the nonuniformity of the external  magnet ic  field, i .e . ,  a "magnet ic"  pump de-  
velops .  

We follow how the the rma l  convect ion affects  this liquid flow. The the rma l  convection does not exer t  
an effect  on the magnitude of the liquid flow ra te .  The effect  of Convective flow on the movemen t  of the 
liquid under  the effect  of an external  magnet ic  field is exp re s sed  in a change in the veloci ty  p rof i le  of the 
flow. F o r  this we cons t ruc t  a dependence of the veloci ty  on x in the form:  

_vv = ~ xshM-=shMx ~_ M (chM--chMx),  ~ = G_~r 
M S sh M 2 sh M r162 

The effect  of f r ee  convection on the MHD flow of the liquid for  M = 2 and M = 4 is indicated in Fig. 4a,  b. 

As seen  f rom Fig. 4, f ree  convect ion exe r t s  a cons iderable  effect  on the veloci ty  p rof i l e  of flow, r igh t  
up to the appearance  in the channel of downward movemen t  of the liquid. For  M = 2 the downward flow a p -  
p e a r s  a t  fl = 10, while for  M = 4, as  one should expect ,  downward flow appea r s  in the channel a t  the higher.  

fl = 60. 

Thus,  one can draw the conclusion that  the s t ronge r  the external  magnet ic  field, i .e . ,  the l a r g e r  the 
H a r t m a n  number  M, the weaker  is the effect  of f r ee  convection on the liquid flow a r i s ing  f rom the effect  of 
the external  nonuniform magnet ic  field. 

We t race  whether  the generat ion of MHD flow of the liquid makes  a contr ibution to the ver t i ca l  con-  
vect ive  hea t  flux: 

§ 
QM = ~ v (x) 0 (x) dx. 

- - I  

I t  is seen  f rom Eq. (4) for  the veloci ty  that the second t e rm ,  produced by the nonuniformity of the 
magnet ic  field, does not make  a contr ibution to the convect ive heat  flux, s ince a f t e r  integrat ion we obtain 
an even function mutual ly  compensa t ing  within the substi tut ion l imi ts .  Thus,  the ver t ica l  convect ive heat  
flux pe r  unit length in the d i rec t ion  of the y axis  is: 

QM 4 5 ( 1  cthM ), 

Qo M ~ 3 54 

where  Q0 = 2 G r / 4 5  is the hea t  flux in the absence  of a magnet ic  field. I t  coincides with the heat  flux a r i s i n g  
in a ve r t i ca l  channel in an external  uniform t r a n s v e r s e  field [9]. And this should be expected s ince the 
developing MHD flow exis ts  under  i s o t h e r m a l  conditions and consequently does not t r an s f e r  heat.  

The authors  exp re s s  the i r  s i nce re  thanks to Academic ian  A. V. Lykov for  scientif ic  guidance and for  

constant  at tent ion to the work .  

N O T A T I O N  

a is the half  width of  the chan_~el; 
201 is the constant  t e m p e r a t u r e  drop between the chalmel wai ls ;  
v is the k inemat ic  v i scos i ty ;  

is the dynamic v i scos i ty ;  
p is the densi ty  of the liquid; 
# is the magnet ic  pe rmeab i l i t y  of the liquid; 
a is the specif ic  conductivity of the liquid; 
H is the magnet ic  field s t rength ;  
P is the hydros ta t ic  p r e s s u r e ;  

is the coeff icient  of the rma l  diffusivity;  
fl is the coeff icient  of vo lumet r ic  expansion. 
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